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Abstract—Suboptimal parallel schemes for the acquisition of
spreading sequences in chip-asynchronous spread-spectrum
systems are considered. These acquisition schemes try to
estimate the unknown delay of the received signal with re-
spect to a locally generated spreading code. Two schemes
are presented which are considerably simpler to implement
than the optimal estimator, and an exact formula is derived
for the error probability of one of the schemes. Numeri-
cal results show that the performance of the suboptimal
estimators is comparable to that of the optimal estimator.

I. INTRODUCTION

In a direct sequence spread-spectrum (DS/SS) communi-
cations system, in order for the receiver to demodulate
the received signal, it must first synchronize its locally
generated code sequence to the code sequence in the re-
ceived signal. The synchronization process is divided into
the two stages of acquisition and tracking [1]. Acquisi-
tion refers to the coarse synchronization of the received
sequence and locally generated sequence to within some
fraction of the chip duration of the code sequence. Once
acquisition has been accomplished, a code tracking loop is
employed to achieve fine alignment of the two sequences
and maintain that alignment. Because communication
cannot take place before acquisition has been achieved,
the development of quick and effective acquisition schemes
is important. We consider the acquisition process for the
simplified model of the DS/SS system in which we as-
sume that no data modulation is present and that carrier
synchronization has been achieved.

Let the code sequence {c} = (..., co,c1,¢2,...) denote
a PN sequence of period N, with ¢; € {—1,1}, where by
PN sequence we mean a binary maximal-length shift reg-
ister sequence. Let ¢(t) = Z;’i_oo ¢; Il (t — jT¢) denote
a pulse train, where Iz, (-) 1s a rectangular pulse func-
tion of duration T, centered at 7./2. This pulse train
modulates an RF carrier to produce the spreading signal
c(t) cos{wot+d). The receiver input corresponding to such
a transmitted signal is

r(t) = V2Vt + 0T, ) cos(wot + 0) + n(t),

where V' is the received signal power, 67, is the unknown
time shift, § = ¢ + wodT. is the RF phase of the carrier,
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and n(t) is additive white Gaussian noise with two-sided
power spectral density 179/2. We assume that the RF car-
rier has been completely acquired, so that the receiver
is perfectly synchronized to the carrier in both frequency
and phase. Thus it suffices to treat the receiver input as

r(t) = VVe(t + 8T.) + n(t).

Note that we have simplified the model by not includ-
ing any data modulation on the signal. Many DS/SS
transmissions include a preliminary training period dur-
ing which only the phase-coded RF carrier is transmitted
[1].

The acquisition problem is that of finding an estimate
destTe of the unknown time shift §7, such that 8T, —&,,: T
is within the pull-in range of the code tracking loop. Since
the spreading code has period NT,, we can assume that
d € [0, N). Therefore, the signal is said to be acquired if

mln{[&—- ‘sestlvN - M_Je.stl} < C

for some specified ¢ corresponding to the pull-in range of
the code tracking loop. The results in this paper are given
for ¢ = 1.

Chawla and Sarwate [2] presented several schemes for
the parallel acquisition of PN sequences. Unfortunately,
there are shortcomings to these schemes. The optimal
estimator Sops of [2] requires large amounts of computa-
tion, and its performance cannot be analyzed easily. On
the other hand, the locally optimal estimator Sy, is easy to
implement and analyze, but has quite poor performance
[2]. In this paper, we present suboptimum estimators that
are easy to implement and yet perform well. One of our es-
timators is essentially a hybrid of the maximum likelihood
estimator presented in [2] and the optimal estimator. The
performance of this simple estimator can be analyzed ex-
actly, and the results provide bounds and approximations
for the performance of the optimal estimator.

II. OPTIMAL ESTIMATOR

In a parallel acquisition scheme, the receiver computes
{in parallel) the correlation of the received signal with
the N phases of the spreading sequence and estimates &
from the correlation values. Suppose 6 = k + ¢, where
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ke {0,...,N =1} and € € [0,1). As shown in [2], the N
observations may be taken to be independent unit vari-
ance Gaussian random variables with E[Xx] = (1 — €)u,
E[Xk41] = ep, and E[X,] == 0 otherwise, where p =
[2VT.(N + 1)/n0]/? is a measure of the signal-to-noise
ratio (SNR). Thus, the conditional joint density function
of X givend =k +¢€is

N-1
$(zx — (1 — ) $(xrsr — €p) H é(z

‘;u k+1

hx|5(xlk + E) =

1)

where ¢(-) denotes the unit Gaussian density function.
The optimal estimator maximizes the a posteriori prob-
ability that & lies in an interval of width one centered at
the estimate 6. Under the assumption that § is uniformly
distributed over [0, N), the optimum estimate is given by

§41/2
Jopt = arg max / hxs(x|u)du. (2)
belo,N)y Jé—1/2

As shown in [2], for sell—1/2,1+1/2), (where 0 <1 <
N —1), the integral in (2) has value

R(x,0 = 1,p1) [((zi-1 — 0+ 1)/V2))~
(211 — 21+ 2015~ 1)/V?)]

+Rx, 1) [@((@1 = i1 + 2006 = 1)/V2)~
RZIE (3)
where ®(-) is the unit Gaussian distribution function and

—uV2) TI ¢led)/Vou

i£LI+1

1) =

@((I[ - I1+1

R(x,1,p) = ¢([z1 + T

The algorithm S, for finding d.,: is as follows [2]:

Foreach 0 <! < N —1,if z; > max{;_1, %141},
there is a local maximum of the function I() in
the interval (I — 3,0+ §) at

F Ti+1 — Ty

d=1+ 202z — Ti—1 — Tip1) )
Compute I(8) at each local maximum and find
the global maximum of these values. d,p¢ is the
location of this global maximum. (Here, and
throughout the paper, we ignore the possibility
that ; = 2,41 since these events have zero prob-
ability.)

Although S,,¢ minimizes the average error probability
over all values of €, computation of the decision statis-
tic 1(8) requires the evaluation of exponential and error

functions. Since there are roughly N/3 local maxima, and
it is necessary to compute (3) at each one, this scheme is
computationally intensive. In addition, the error proba-
bility is very difficult to evaluate.

We consider two different methods for reducing the
computational burden in the optimal estimator. The first
method is to replace 1(6) with a simpler function I (5)
whose maxima are in the same location as the maxima
of I(8). If I (é) exhibits the same behavior as I(8), then
the locations of the global maxima of the two functions
may well be the same too. This strategy still requires
the computation of Ir,(§) at N/3 local maxima, but the
computations are much simpler. The second method is
to create a hybrid estimator using a combination of the
maximum likelihood scheme of [2] with the optimum es-
timator. We consider these techniques next.

I11. SUBOPTIMAL ESTIMATORS
Let us again consider the conditional density function

N-1
$(zi—(1—)p)p(zrsr—en) [] o).

i=0
i#k, k41

hxs(x|k+¢) =

(5)
One suitable replacement for hxys(x|u) is hp(x,u), which
we define to be the bounded and continuous piecewise
linear function with endpoints (k,zx). Note that, as in
[2], it can be easily shown that the maxima of the function

X §+1/2
]L(5)=/6 hL(x,u)du (6)

6-1/2

are exactly the d;’s given in (4) . Hence, Jr, the global
maximum of I1(4), is just one of the local maxima of I(J)
and it is our fondest hope that this local maximum of 1(8)
is also its global maximum &,p¢. This will certainly be the
case when p is small for the following reason. The Taylor
series expansion of hxjs(x|u) around p = 0 is

N-1
hxps(xlu) = [1+p[(1 - )z + ezppa] + . ] H é(:)
N 1=0
= [1+4phr(x,u)+..] H é(zi)-

Thus, in the limit as p — 0, I(6) = Q +u}’L(6)] I

and hence the global maxima of (d) and I (8) occur at
the same point. In other words, I, L(é) is just a linear
function of the small-signal approx1matlon for I (5), and
the estimation scheme proposed below is just the limiting
form of the optimal estimator as the SNR y approaches

zZ€ero.
Substitution of hy (x|u) for hx|s(x|u) allows us to derive
an estimation scheme that is much simpler than Sops. As
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Figure 1: The statistic I, (31) is the shaded area.

shown in Fig. 1, hp(x|u) is a piecewise linear function,
and hence simple geometry suffices to derive the following
estimation scheme Sy,.

Foreach 0 <! < N -1, if z; > max{zi_1, 2141},

there is a local maximum of I, (d) at

Tiy1 — Ti-1
2(2z; — zi—1 — 2i41)

<§z=l+ (7

Compute

ZUREES ermer

at each local maximum and find the global max-
imum of these values. J§; is the location of the
global maximum.

Since St is the limiting form of the optimal estima-
tor for small SNR, we can expect its performance to be
quite comparable to that of the optimal estimator for
small SNR. In fact, simulation results (presented later
in this paper) show that the performance is very good
over a wide range of SNR. In addition, this scheme re-
quires considerably less computation than the optimum
scheme. Although Ir.(§) must be computed at each of the
roughly N/3 local maxima, computation of (8) is almost
trivial compared to that of (3) . Unfortunately, analytical
results for the performance of this scheme remain quite
difficult to obtain.

Although the computational requirements for Sy are
considerably less than those for S, it is still necessary to

compute I (4) at numerous values of §. We now consider
an even simpler scheme which requires very little compu-
tation. Note from Fig. 1 that Ir(4), which is the area of
the shaded pentagon, can be approximated roughly {actu-
ally upper bounded) by the area of the rectangle of height
z; on the unit base. Hence, we might choose to compare

these approximations of I (8) rather than the actual val-
ues of I () in order to find the location of the global
maximum. However, in doing this, the search is simpli-

fied considerably because it is no longer necessary to find

the locations of all the local maxima first. QOur scheme
(which we denote by Sp,,) simply is

Let I* = argmaxocicn-1{2:}. Then the esti-
mate of § is

. Tyegr — Tpe_)
Omo =1 + . 9
me 2(2zp0 — o1 — Tye 41) ©)

Smo is a hybrid scheme in the following sense. Consider
the maximum likelihood scheme Sy, of [2] according to
which a local maximum exists in [I,{4 1] if |41 — x| < p
orif z; > max{zi_1, 141} + p. As the SNR p approaches
zero, the probability that the first condition is satisfied
approaches zero. On the other hand, the second condi-
tion reduces to z; > max{z;_1, 41}, in which case the
maximum is 2uz; — p? at & = I. Thus, the limiting form
of Smie 18 6mie = I* = argmax{z;}. The scheme Sp,,,
however, differs in that it uses the right side of (9) as the
location of the global maximum. Note that the right side
of (9) is one of the §;’s of (4) that are the local maxima of
I(8). Thus, Sy, can be viewed as a hybrid of the limiting
form of the maximum likelihood scheme with S,p; or Si.
It also has the advantage that it requires very little calcu-
lation compared to either S, or Sp or even Spye or Sio
[2]. Furthermore, because the decision statistic is so sim-
ple, we can actually compute its performance exactly, and
these results can be used as approximations and bounds
on the performance of the other schemes. Such analysis
is considered next.

IV. PERFORMANCE ANALYSIS

In general, analytical expressions for the error probabili-
ties for most of the acquisition schemes are difficult to ob-
tain. In [2) some bounds and approximations were found
for the performance of Syp; and Si,. A rather loose lower
bound on the conditional error probability (given €) that
applies to the schemes presented in this paper is given in
[3]. For Sm,, however, we can derive an exact expression
for the conditional error probability as follows.

Without loss of generality, let 6 = 1 + ¢. Then, S0
acquires successfully if and only if either

Ty — 1
1.z = m?.x{:ci} and L5(2_m1~2~—:600::—cz_) — € S 5, or
3 — X 1
. = i d 1~ -,
2.z, m’ax{:c } an (22 — 2, —23) + €<3

Recall that when § = 14 ¢, the X;’s are independent unit
variance Gaussian random variables, and all have zero
mean except for X; and X, which have means (1 — €)u
and €y respectively. Let € = 1 — e. The probability that
2—(27)5{"7};{75—4 < %, given that X; = ¢ and X, =
y and X3 > max{X2, X3}, is ®(((1 — 2¢)z + ey)/€) =
®,(z,y,¢). The probability that { - f‘ <1

Xa—X,
2(2X7~ X1~ Xa) >

given that X; = z and X; = y and X7 > max{X, X3},
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is ®(((2¢ — 1)z + €y)/e) = Po(z,y,€). Thus it is easily
seen that
Pee [Smo] = (10)

/ / )N‘3¢ (z — €u)d(y — ep)®i(z,y, €)dy dz
—/_ /:I)(:z:)N_3¢(r—ep)¢(y—€p)<1>2(1:,y,c)dyd1‘,

since the first integral is the probability that condition
1 holds, and the second integral is the probability that
condition 2 holds. This expression can be evaluated nu-
merically. The average value of this error probability over
all € from 0 to 1 is difficult to calculate, but we can bound
the average error probability by finding the values of €
for which the conditional error probability is maximized
and minimized. The derivative of (11) with respect to €
is zero at € = 0.5, and since the right hand side of (11) is
symmetric about € = 0.5, we do have a local maximum or
minimum at that point. Numerical evidence (e.g. Fig. 5)
supports our assertion that € = 0.5 is indeed the location
of the maximum value of (11) . Therefore, we conjecture
an upper bound on the average error probability to be

Pe|0A5y 1.e.,

PSma] < 1-2 ] V=342 — 1/2)

><¢(y—u/2) (v)dydz. (1)
This of course would also be an upper bound on the av-
erage error probability for S,p;. Note that for ¢ = 0, the
second integral in (11) is zerc and we have

Pgo=1- / B(2)V ' 4(z — p) dz,

— 00

(12)

which is the error probability for N-ary orthogonal sig-
naling. Numerical evidence (e.g. Fig. 5) supports the
conjecture that (11) is minimum at € = 0, so the right
hand side of (12) is a conjectured lower bound on the
average error probability for Sn,.

The conditional error probability given by (11) involves
time-consuming double numerical integration. A some-
what simpler formula that approximates (11) may be ar-
rived at by assuming that the events in condition 1 that
are necessary for Sy, to acquire successfully, 1e., z; =

za=g . 1
2(2z,—zo—22) S 27

and likewise for the events in condition 2. This assump-
tion leads to the following approximation for the condi-
tional error probability of Sy, given e:

Peje[Smo] = 1 — ®(p (362—3€+1)/2)/m

x[®(x — ep)p(z — ep) + Pz — ep)o(x ——eu)]d:z:.

Numerical results show that for several values of € this
formula approximates (11) quite well.

— €

max;{z;} and are independent,

@(x)N—i!
(13)

V. NUMERICAL RESULTS

Because the error probabilities for most parallel acquisi-
tion schemes are very difficult to calculate, we must rely
on Monte Carlo simulation to gauge their performance.
Therefore, we have simulated the schemes Sop¢ and St
using a length 1023 PN sequence, and used (11) to cal-
culate the conditional error probability for Sp;,. Condi-
tional error probabilities are determined for three values
of € and a range of values of i, which is a measure of the
signal-to-noise ratio.

Fig. 2 is a plot of the simulated error probabilities
and of (11) along with the approximation (13) as a func-
tion of u for ¢ = 0.125. All of the error probabilities
are close to éach other, and the approximation is practi-
cally indistinguishable from the actual error probability
for Smo. The error probabilities in this figure are such
that Pe0.125[Smo] < Pe,0.125[8L] < Pe,0.125[Sopt]- This is
not a contradiction, because although S,y has the small-
est average error probability over all values of ¢, it may not
necessarily have the smallest conditional error probability
for every value of ¢. In fact, since the decision statistic
of 8o is the optimum one if € = 0, we expect Sy, to
perform well for small values such as € = 0.125.

Fig. 3 is a plot of the error probabilities and (13) as a
function of p for € = 0.25. Again, the error probabilities
of the three schemes are fairly close, but the order is now
Pe 0.25[SL] < Pe0.25[8opt] < Pe,0.25[Smo)-

Fig. 4 shows the error probabilities and (13) as a func-
tion of u for € = 0.5. In this case, S still tracks the
performance of S,y fairly well, whereas P o.5[Smo] does
not fall off quite as fast as p increases. Note that this plot
shows the (conjectured) worst case error probability (11)
for Spno.

Fig. 5 shows the conditional error probability of Smo
as a function of ¢ for the particular value of 4 = 8.0. We
believe this plot to be typical of the behavior of equation
(13) for any g in that the maximum value is at € = 0.5
and the minimum is at ¢ = 0 and e = 1.

From the numerical results, we see that the suboptimal
scheme S performs very well for the values of € that we
examined, and that S,,, does not perform significantly
worse than the other schemes. The approximation we
have given for Pej¢[Smo] is also shown to be quite good.

VI. CONCLUSION

In this paper, we have investigated suboptimal parallel
acquisition schemes for PN sequences in DS/SS systems.
The suboptimal schemes are based on the idea of replacing
the conditional probability density function of the obser-
vations given the delay & by the piecewise linear function
connecting the observations in order to find simpler deci-
sion statistics. The scheme &y performs very well and is
considerably less costly to implement than Sop;. However,
it still involves significant computation. On the other
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Figure 3: Error Probabilities for ¢ = 0.25

hand, the scheme S, degrades slightly in performance
compared to 8, and S,p; for some values of €, but is very
simple to implement. In fact, S, requires practically the
minimum amount of computation and its performance can
be determined analytically. A good approximation to the
conditional error probability for Sy, is given, along with
conjectured bounds on the average error probability. An
additional asset of Sy, (as well as of S) is the fact that
one does not need an estimate of the SNR p in order to
implement the scheme. In contrast, both S,,; and 8.
require the value of y for their estimates. Therefore, we
believe S, is an excellent candidate for implementation.
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